Mark Scheme - AS 1.2 Basic Ideas About Atoms

1.	(a)	Oil is	s non-renewable / will run out	(1)		
		Contribution of CO ₂ to global warming (1)				
		Oil h	as other important uses	(1)	[2]	
		(Max	(Maximum 2 marks)			
	(b)	(i)	generate the			
			Resulting in CO ₂ formation (global w	arming) / aci	d rain (1)	
			Manufacture of car produces pollutio	n (1)	[2]	
			(Maximum 2 marks)		28.50	
			QWC Legibility of text; accuracy of s and grammar, clarity of meaning	spelling, pund	ctuation [1]	
		(ii)	Disagree, no fuel is 100% safe / petrol can burn	explosively		
			(Accept agree if valid reason given e being lost)		of lives [1]	
	(c)	(i)	Hydrogen since frequency is inverse wavelength / smaller wavelength	ly proportion	al to [1]	
		(ii)	Hydrogen since energy is proportion greater frequency / E = hf	al to frequen	cy / [1]	
	(d)	In Ne greater shielding of <i>outer</i> electron (1) outweighs larg nuclear charge (1) / He has greater effective nuclear charge He <i>outer</i> electron closer to nucleus (1)				
		110 0	- max 1 if no reference to outer elect	ron	[2]	
		(Maximum 2 marks)				
	(e)	(i)	²¹⁸ Po		[1]	
		(ii)	Since radon is a gas / inhaled, α part in the lungs (which may cause cance		given off [1]	
				T	otal [12]	

2.

Moles of PbS = 20,000 ÷ 239.1 = 83.65 moles (1)

(b) (i) Sulfur dioxide: Acid rain (1)

- (ii) I. Sum of M_r of reactants = 223 + 28 = 251 (1)

 Atom economy = (207 ÷ 251) x 100 = 82.5% (1) [2]
- (ii) II. Method 1 as higher atom economy means less waste / more useful product [1]
- (c) (i) Symbol = Po (1) Mass number = 212 (1) [2]
 - (ii) All three arrows labelled correctly, as shows below, gives two marks
 - Any two arrows labelled correctly gives one mark [2]

- (iii) γ-radiation is high energy / frequency electromagnetic waves (1)
 - It affects neither atomic number nor mass number / it changes neither the number of protons nor neutrons (1) [2]
- (iv) 31.8 hours = 3 half lives (1)

(d)
$$A_r = [(206.0 \times 25.48) + (207.0 \times 22.12) + (208.0 \times 52.40)] \div 100 (1)$$

 $A_r = 207.3 (1)$

1 mark for correct significant figures (answer must be reasonable) [3]

Total [19]

3.	(a)		Electrons within atoms occupy fixed energy l increasing energy / nitrogen has electrons in 1s ² 2s ² 2p ³		
			Electrons occupy atomic orbitals within these shells / The first shell in nitrogen has s orbitals and the second shell s and p orbitals (1)		
			A maximum of two electrons can occupy any Each s orbital in nitrogen contains two electr		
			Each with opposite spins	(1)	
			Orbitals of the same type are grouped to get are three p orbitals in nitrogen's p sub-shell	ner as a sub-shell/There (1)	
			Each orbital in a sub-shell will fill with one ele / In nitrogen's p sub-shell each orbital contai (1)		
			(configuration mark + any 3 of above)		[4]
			QWC The information is organised clearly specialist vocabulary where appropriate	and coherently, using	[1]
	(b)		Atomic spectrum of hydrogen is a series of li that get closer as their frequency increases ((credit possible from labelled diagram)		
			Lines arise from atom / electrons being excit electron jumping up to a higher energy level falling back down and emitting energy (in the radiation) (1) to the n = 2 level (1) (any three points for maximum 3 marks)	(1)	
			Since lines are discrete energy levels must be energy emitted is equal to the difference beto ΔE is a fixed quantity or quantum (1)		
	(c)	(i)	It has greater nuclear charge (1)		[6]
		100	but little / no extra shielding (1)		[2]
		(ii)	In Be less shielding of outer electron outweighs smaller nuclear charge	(1) (1)	
			or		
			Be outer electron closer to nucleus Be has greater effective nuclear charge	(1) (1)	[2]
		(iii)	I. Too much energy required to form B ** ion		[1]
			II. $K^{\bullet}(g) \rightarrow K^{2\bullet}(g) + e^{-}$		[1]
			III. Value of 1 st and 3 rd I.E. will be higher Value of 2 rd I.E. will be smaller	(1) (1)	
			(accept large jump in I.E. value would be electrons for 1 mark)	between 2" and 3"	[2]

[2]

[1] (a) (i) 12 (ii) 14 [1] Percentage / abundance / ratio / proportion of (iii) each isotope [1] (b) (i) 0.125 g [1] (ii) e.g. Cobalt-60 (1) in radiotherapy (1) / Carbon-14 (1) in radio carbon dating (1) / lodine-131 (1) as a tracer in thyroid glands (1) [2] (c) (i) Atoms are hit by an electron beam / electrons fired from an electron gun (and lose electrons) (ii) To be able to accelerate the ions (to high speed) / so that they can be deflected by a magnetic field no credit for 'so that atoms can be deflected...' [1] (III) They are deflected by a magnetic field / according to the m/z ratio [1] (d) 2s 2p 3s 1s 3p [1] $Mg_2N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$ (e) (i) [1] moles $Mg(OH)_2 = 1.75/58.32 = 0.0300 (1)$ (ii) moles $Mg_2N_2 = 0.0100$ (1) mass $Mg_3N_2 = 0.01 \times 100.9 = 1.01 g (1)$ [3] - must be 3 significant figures to gain third mark

Total [14]

5.

(iii) Moles
$$Ca(NO_3)_2 = 5.40 \times 10^{-3}$$
 (1)
Moles gas = 1.35×10^{-2} (1)
Volume gas = 0.324 dm³ (1) [3]

(c) Moles
$$Ca(NO_3)_2 = 0.0256$$
 (1)
Moles $H_2O = 0.102$ (1)
 $x = 4$ (1) [3]

Total [11]

(a)	same number of protons and electrons (1)			
	0, 1 and 2 neutrons (1)			
(b)	(i)	3 energy levels between $n=2$ and $n=\infty$ becoming closer together first gap must be < that between $n=1$ and $n=2$	[1]	
	(ii)	any arrow pointing upwards (1)		
		from $n = 1$ to $n = \infty$ (1)	[2]	
(c)	(i)	visible	[1]	
	(ii)	(not correct because) Balmer series corresponds to energy to involving n = 2 (1)	ransitions	
		for ionisation energy need Lyman series / energy transitions $n=1 \ \ (1)$	involving [2]	
(d)	(i)	$Q(g) \rightarrow Q^{+}(g) + e / accept any symbol$	[1]	
	(ii)	Group 6	[1]	
	(iii)	In T there is more shielding (1)		
		The outer electron is further from the nucleus (1)		
		The increase in shielding outweighs the increase in nuclear charge / there is less effective nuclear charge (1)	[3]	
		Legibility of text; accuracy of spelling, punctuation and gramic clarity of meaning QWC	mar; [1]	
			Total [14]	

(a) C B D E A [2]
(1 mark if one mistake e.g. A in wrong place)

(b) Z (1)
Si is in Group 4 therefore large jump in ionisation energy would be after the fourth ionisation, not before it / W, X and Y have a large jump before the fourth ionisation energy so cannot be in Group 4 (1)

8.

(a) C [1] (b) B

- (a) K → 1s²2s²2p⁶3s²3p⁶4s¹ (1)
 There is one outer electron and the loss of this electron gives a stable potassium ion with a full outer shell/ ion more stable than the atom (1) [2]
- (b) (i) $\Delta T = 4.8 \,^{\circ}\text{C}$ (1)

$$\Delta H = -\frac{250 \times 4.2 \times 4.8}{0.125} = -40320 \text{ J mol}^{-1} / -40.3 \text{ kJ mol}^{-1} (2) [3]$$

- √ for negative sign
- ✓ correct value with relevant units
- (ii) e.g. The volume used was not precise in measurement as the readings on a beaker are only approximate (1)

 The experiment was performed in a beaker and this was not insulated and heat was lost to the surroundings (1) [2]

there may be other acceptable answers here, for example based on slow dissolving

- (c) (i) 0.050 [1]
 - (ii) $(0.050 \times 24.0) = 1.20 \text{ (dm}^3)$ [1]
 - (iii) % $v/v = 1.20 \times 0.001 \times 100$ (1) = 0.06 (1) [2]
- (d) An increase in the concentration of (aqueous) carbon dioxide causes the position of equilibrium to move to the right. (1)
 This causes calcium carbonate to become aqueous calcium (and hydrogencarbonate) ions / dissolve (1)
 weakening shells / causing difficulty in formation of shells (1)

 [3]

Organisation of information clearly and coherently; using specialist vocabulary where appropriate QWC [1]

Total [15]

10.	(a)		Electrons within atoms occupy fixed energy level increasing energy / nitrogen has electrons in to 1s22s2p3		
			Electrons occupy atomic orbitals within these shells / The first shell in nitrogen has s orbitals and the second shell s and p orbitals (1)		
			A maximum of two electrons can occupy any o Each s orbital in nitrogen contains two electron		
			Each with opposite spins	(1)	
			Orbitals of the same type are grouped to gethe are three p orbitals in nitrogen's p sub-shell	r as a sub-shell/There (1)	
			Each orbital in a sub-shell will fill with one elec / In nitrogen's p sub-shell each orbital contains (1)		
			(configuration mark + any 3 of above)		[4]
			QWC The information is organised clearly an specialist vocabulary where appropriate	nd coherently, using	[1]
	(b)		Atomic spectrum of hydrogen is a series of line that get closer as their frequency increases (1) (credit possible from labelled diagram)		ניו
			Lines arise from atom / electrons being excited electron jumping up to a higher energy level (1 falling back down and emitting energy (in the fradiation) (1) to the n = 2 level (1) (any three points for maximum 3 marks))	
			Since lines are discrete energy levels must hat energy emitted is equal to the difference betwee ΔE is a fixed quantity or quantum (1)		
	(c)	(i)	It has greater nuclear charge (1) but little / no extra shielding (1)		[6] [2]
		(ii)	In Be less shielding of outer electron outweighs smaller nuclear charge	(1) (1)	
			or		
			Be outer electron closer to nucleus Be has greater effective nuclear charge	(1) (1)	[2]
		(iii)	I. Toomuch energy required to form B ⁵ ion		[1]
			II. $K^{*}(g) \rightarrow K^{**}(g) + e^{-}$		[1]
			III. Value of 1 st and 3 rd I.E. will be higher Value of 2 rd I.E. will be smaller	(1) (1) shween 2 ^{ng} and 3 ^{ng}	
			(accept large jump in I.E. value would be be electrons for 1 mark)	ciwcenz and 3	[2]

(a)	(i)	A helium (atom) nu	cleus / 2 protons and 2	neutrons / ⁴ He ²⁺	[1]
(a)	(1)	A Helium (atom) nu	cieus / 2 protoris anu 2	TICUIIOTTO TIC	נים

(iii)
$$(4 \times 2.6) = 10.4$$
 [1]

(b) The frequency of the green line at 569 nm is HIGHER, than the frequency of the yellow-orange line at 589 nm. Another line is seen at 424 nm, this is caused by an electronic transition of HIGHER, energy than the line at 569 nm.
[1]

(c) (i)
$$Na_2CO_3$$
 $NaHCO_3$ $2H_2O$ 106 + 84 + 36 (1) \rightarrow 226 [1]

(or by other appropriate method - note mark is for the working)

(ii) Atom economy =
$$\frac{M_r \text{ required product} \times 100}{\text{Total '}M_r' \text{ of the reactants}}$$
 (1)

$$= \frac{318 \times 100}{452} = 70.4 / 70.35 (\%) (1)$$
[2]

- (iii) Carbon dioxide is produced (and released into the air) and this contributes to the greenhouse effect / increases acidity of sea (1) It should be trapped / a use found for it. (1) [2]
- (d) (i) Water is acting as a proton donor (1) and this combines with the carbonate ion / CO₃², giving the hydrogencarbonate ion / HCO₃⁻ (1)
 [2]
 - (ii) The pH scale runs from 0-14 / measure of acidity / alkalinity (1) pH <7 acid / >7 alkali (1) acid stronger as pH value decreases / alkali stronger as pH value increases / 11.4 is strong alkali (1)
 [3]

Total [15]